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Abstract Transition points are well defined topological features in 3D tensor fields,
which are important for the study of other prominent topological singularities such
as wedges and trisectors. In this paper, we study the maximum number of transition
points in a linear tensor field, which is important to process wedge and trisector
classification along degenerate curves.

1 Introduction

3D symmetric tensor field topology consists of degenerate curves and neutral sur-
faces [6]. Transition points, which are degenerate points that separate wedge and
trisector segments along a degenerate curve, are important topological features that
are key to the study of 3D symmetric tensor field topology [10].

To the best of our knowledge, existing degenerate curve extraction methods do not
explicitly extract transition points. We believe that this is largely due to the fact that
it is not known how many transition points can exist in a tensor field and how to
algebraically characterize them. In this paper, we attempt to address this cause by
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studying the minimum and maximum numbers of transition points in a 3D linear
symmetric tensor field.

2 Previous Work

There has been much work on the analysis and visualization of 2D and 3D tensor
fields. We refer the readers to the recent survey by Kratz et al. [5]. Here we only
refer to the research most relevant to this chapter.

Delmarcelle and Hesselink [1, 2] introduce the topology of 2D symmetric tensor
fields. They point out that there are two fundamental types of degenerate points in
a 2D symmetric tensor field, i.e., wedges and trisectors, which have a tensor index
of 1

2 and − 1
2 , respectively. Hesselink et al. later extend this work to 3D symmetric

tensor fields [4] and study triple degenerate points, i.e., all eigenvalues are the same.
Zheng et al. [9] point out that triple degeneracies are not structurally stable features.
They further show that double degeneracies, i.e., tensors with only two equal eigen-
values, form lines in the domain. In this work and subsequent research [11], they
provide a number of degenerate curve extraction methods based on the analysis of
the discriminant function of the tensor field. Furthermore, Zheng et al. [10] point
out that near degenerate curves the tensor field exhibits 2D degenerate patterns and
define separating surfaces which are extensions of separatrices from 2D symmetric
tensor field topology. Zhang et al. [8] show that there are at least two and at most
four degenerate curves in a 3D linear symmetric tensor field under structurally sta-
ble conditions. In this paper, we explore the minimum and maximum number of
transition points in a 3D linear tensor field.

3 Background on Symmetric Tensors and Tensor Fields

We review some pertinent technical concepts in this section on tensors and tensor
fields.

A K dimensional (symmetric) tensor T has K real-valued eigenvalues: λ1 ≥ λ2 ≥
·· · ≥ λK . The largest and smallest eigenvalues are referred to as the major eigen-
value and minor eigenvalue, respectively. When K = 3, the middle eigenvalue is
referred to as the medium eigenvalue. An eigenvector belonging to the major eigen-
value is referred to as a major eigenvector. Medium and minor eigenvectors can
be defined similarly. Eigenvectors belonging to different eigenvalues are mutually
perpendicular. A tensor is degenerate if there are repeating eigenvalues. In this case,
there exists at least one eigenvalue whose corresponding eigenvectors form a higher-
dimensional space than a line. When K = 2, a degenerate tensor must be a multi-
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ple of the identity matrix. When K = 3, there are two types of degenerate tensors,
corresponding to three repeating eigenvalues (triple degenerate) and two repeating
eigenvalues (double degenerate), respectively. There are two types of double degen-
erate tensors: (1) linear (λ1 > λ2 = λ3) and (2) planar (λ1 = λ2 > λ3). The trace of
a tensor T = (ti j) is trace(T ) = ∑

3
i=1 λi. T can be uniquely decomposed as D+A

where D = trace(T )
3 I (I is the three-dimensional identity matrix) and A = T −D. The

deviator A is a traceless tensor, i.e., trace(A) = 0. Note that T is degenerate if and
only if A is degenerate. Consequently, it is sufficient to study the set of traceless
tensors, which is closed under matrix addition and scalar multiplication.

A tensor field is a tensor-valued function over some domain Ω ⊂ R3. The topology
of a tensor field is defined as the set of degenerate points, i.e., points in the domain
where the tensor field becomes degenerate.

In a 2D tensor field, there are two fundamental types of degenerate points, wedges

and trisectors. They can be classified based on an invariant δ =

∣∣∣∣( a11−a22
2 a12

b11−b22
2 b12

)∣∣∣∣,
where ai j =

∂ ti j(x,y)
∂x and bi j =

∂ ti j(x,y)
∂y , i.e., the partial derivatives of the i j-th entry

of the tensor field. A degenerate point p0 is a wedge when δ (p0)> 0 and a trisector
when δ (p0) < 0. When δ (p0) = 0, p0 is a higher-order degenerate point, which is
structurally unstable.

In 3D symmetric tensor fields, a degenerate point can be classified by the linear-
planar classification and the wedge-trisector classification. In the former, a degener-
ate point is either triple degenerate, linear degenerate, or planar degenerate. While
triple degeneracies can exist, they are structurally unstable, i.e., they can disappear
under arbitrarily small perturbations. In contrast, linear and planar degenerate points
are structurally stable, i.e., they persist under sufficiently small perturbations in the
tensor field. Moreover, under structurally stable conditions such points form curves,
along which the tensor field is either always linear degenerate or always planar de-
generate. While it is possible that linear and planar degenerate points are isolated
points or form surfaces and volumes, these three scenarios do not persist under ar-
bitrarily small perturbation in the field, i.e., are structurally unstable.

A degenerate point can also be classified based on the so-called wedge-trisector
classification. Given a degenerate point p0, let n = (α,β ,γ) be the non-repeating
eigenvector at p0. The plane P that passes through p0 whose normal is n is referred
to the repeating plane at p0. When projecting the 3D tensor field onto P, one obtains
a 2D symmetric tensor field which, under structurally stable conditions, has exactly
one degenerate point, p0. In the 2D tensor field, p0 can be either a wedge, a trisector,
or a higher-order and thus structurally unstable degenerate point. In these cases, p0
will be referred to respectively as a wedge, a trisector, and a transition point in the
3D tensor field. Figure 1 demonstrates this with a 3D tensor field. Here and in the
remaining figures in the paper, we use the following color scheme for degenerate
points: yellow (linear wedge), green (planar wedge), red (linear trisector), and blue
(planar trisector).
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(a) (b) (c)
Fig. 1 Along a degenerate curve, the projection of the tensor field onto the repeating planes can
exhibit 2D degenerate patterns such as a wedge (a) or a trisector (c). Between segments of wedges
(green) and trisectors (blue), transition points can appear (b).

Note that while a higher-order degenerate point is structurally unstable, a transition
point is structurally stable in 3D tensor fields. Moreover, a transition point is not
the same as triple degenerate points. At the transition point, the repeating plane is
tangent to the degenerate curve.

4 Transition Points in 3D Symmetric, Traceless Tensor Fields

We first note that the set of all traceless and symmetric tensors with configura-

tion

a b c
b d e
c e −a−d

 form a five dimensional linear space T spanned by the ba-

sis Ta =

1 0 0
0 0 0
0 0 −1

, Td =

0 0 0
0 1 0
0 0 −1

, Tb =

0 1 0
1 0 0
0 0 0

, Tc =

0 0 1
0 0 0
1 0 0

, and Te =0 0 0
0 0 1
0 1 0

. Any tensor in this space can be expressed as taTa+tbTb+tcTc+tdTd +teTe

for some ta, tb, tc, td , te ∈ R. For convenience, it can be written in the vector form
(ta, td , tb, tc, te).

A 3D symmetric, traceless linear tensor field has the following form

LT (x,y,z) = T0 + xTx + yTy + zTz (1)
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where T0 =

a0 b0 c0
b0 d0 e0
c0 e0 −a0−d0

, Tx =

ax bx cx
bx dx ex
cx ex −ax−dx

, Ty =

ay by cy
by dy ey
cy ey −ay−dy

,

and Tz =

az bz cz
bz dz ez
cz ez −az−dz

 are symmetric, traceless matrices. Under structurally

stable conditions, T0, Tx, Ty, and Tz are linearly independent. In this section we study
the number of transition points in such a tensor field.

Zhang et al. [8] shows that the degenerate points in a 3D linear tensor field satisfy
the following system of equations

h(α,β ,γ) = 0 (2)
α

2 +β
2 + γ

2 = 1 (3)

where (α , β , γ) is a unit non-repeating eigenvector and h(α,β ,γ) is a homogeneous
quadratic polynomial.

A transition point, as a degenerate point, must satisfy Equations 2 and 3. However,
while degenerate points form curves under structurally stable conditions, transition
points are isolated points. This indicates that one more condition is needed in terms
of α , β , and γ .

Given a linear symmetric tensor field LT (x,y,z) = T0+xTx+yTy+zTz, its projection
onto any plane is also a 2D linear tensor field [7]. Consequently, the discriminant
function δ is constant for the plane. We define a plane to be a wedge plane if δ > 0, a
trisector plane if δ < 0, and more relevantly a transition plane if δ = 0. A transition
point must have its repeating plane as a transition plane. Therefore, characterizing
transition planes gives us the additional condition to characterize transition points.

The following result from [7] is important to our analysis of transition planes.

Theorem 1. Given a 3D linear tensor field LT = T0 + xTx + yTy + zTz and a plane
P, the discriminant function δ of the projection of LT onto P is a function of only
Tx, Ty, and Tz.

This leads to the following results:

Corollary 1. Given a 3D linear tensor field LT = T0 +xTx +yTy + zTz and two par-
allel planes P1 and P2, then P1 is a transition plane if and only if P2 is a transition
plane.

Corollary 2. Given two 3D linear tensor field LT = T0 +xTx +yTy + zTz and LT ′ =
T ′0 + xTx + yTy + zTz, then a plane P is a transition plane for LT if and only if P is
also a transition plane for LT ′.
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Corollary 1 states that whether a plane is a transition plane depends only on the
normal of the plane. Therefore, it is sufficient to only consider planes P : αx+βy+
γz = 0, where (α,β ,γ)t is a unit vector and can be modelled by RP2, the two-
dimensional real projective space.

Corollary 2 states that adding a constant tensor to the whole field will not change
whether a plane is a transition plane. We can therefore set T0 = 0 while finding
the transition planes. Under these simplification conditions, we have the following
result:

Lemma 1. Given a linear symmetric tensor field LT (x,y,z) = xTx + yTy + zTz, its
projection onto the plane P : αx+ βy+ γz = n · p = 0 has either one degenerate
point or a line of degenerate points. The former occurs when δ 6= 0 while the latter
occurs when δ = 0, i.e., transition plane.

Proof. Select a coordinate system (O,X ′,Y ′) for the plane P where O is the origin.
Then the projection tensor field has the following form in this coordinate system:

(
a1x′+a2y′ b1x′+b2y′

b1x′+b2y′ c1x′+ c2y′

)
(4)

Consequently, a degenerate point in T ′ satisfies:

a1x′+a2y′ = c1x′+ c2y′ (5)
b1x′+b2y′ = 0 (6)

The above system corresponds to the intersection of two lines in P. Either the two
lines intersect at one point, i.e., the degenerate point, or they are the same line, i.e.,
every point on the line is a degenerate point. These two cases correspond precisely
to the conditions δ 6= 0 and δ = 0, respectively. ut

This characterization of transition planes is essential in our analysis of the maximum
number of transition points.

We now consider Qn ⊂ T, the set of traceless, symmetric tensors whose projection
onto the plane P : n · p= 0 are 2D degenerate tensors (not necessarily traceless). Note
that the set of 2D degenerate tensors is a codimension-two linear subspace of the set
of 2D symmetric tensors. Therefore, since the projection is clearly surjective, Qn is
also a codimension-two linear subspace of T. That is, Qn is a three-dimensional lin-
ear subspace of T. Qn can be parameterized by a three-dimensional linear subspace
W as follows.

Let qn be the linear map from W which is isomorphic to R3 to the set of 3× 3
symmetric matrices defined as
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qn(r) =
1
2
(nrt + r nt)− 1

3
(r ·n)I (7)

Note that trace(qn(r))= trace( 1
2 (nrt +r nt)− 1

3 (r ·n)I)=
1
2 (trace(nrt)+trace(r nt))−

1
3 r · ntrace(I) = 1

2 (trace(rt n)+ trace(nt t))− r · n = 0. Consequently, qn is a map
from R3 to T, the set of traceless tensors.

Furthermore, we show that qn(r) ∈ Qn for any r ∈ R3. To see this, we return to the
domain of the linear tensor field (which is not W ) and consider the plane Pn. We can
choose a coordinate system X ′,Y ′ for the plane. Let M =

(
X ′ Y ′

)
, which is a 3×2

matrix. The projection of a 3×3 tensor K onto the plane Pn is therefore MtKM. In
particular, Mtqn(r)M = Mt( 1

2 (nrt + r nt)− 1
3 (r · n)I)M = 1

2 MtnrtM + 1
2 Mtr ntM−

1
3 (r ·n)M

tM. Since X ′ and Y ′ are both perpendicular to n, we have Mtn = ntM = 0.
Furthermore, MtM is the 2D identity matrix, i.e., degenerate. Consequently, qn(r) ∈
Qn for any r ∈ R3. This means qn is a map from R3 to Qn.

Furthermore, the map is an injection. This can be verified by studying the ker-
nel of the map, i.e., for what r = (u,v,w) ∈ W , qn(r) is the zero tensor. Note

that qn(u,v,w) =


2αu−βv−γw

3
βu+αv

2
γu+αw

2
βu+αv

2
−αu+2βv−γw

3
βw+γv

2
γu+αw

2
βw+γv

2
−αu−βv+2γw

3

. Given any non-zero n=

(α,β ,γ), the matrix


2α

3 −
β

3 −
γ

3
−α

3
2β

3 −
γ

3
β

2
α

2 0
γ

2 0 α

2
0 γ

2
β

2

 is rank 3. Therefore, for the following equa-

tions to hold,

2αu−βv− γw
3

= 0 (8)

−αu−βv+2γw
3

= 0 (9)

βu+αv
2

= 0 (10)

γu+αw
2

= 0 (11)

βw+ γv
2

= 0 (12)

we must have u = v = w = 0. That is, qn is an injection. This means that qn has rank
3, which is also the dimension of Qn, so the map must be a surjection. Therefore, qn
is an isomorphism between W and Qn, i.e., W is a parameterization of Qn.
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Thus far, we have identified a parameterization for Qn, the set of symmetric, trace-
less tensors whose projection onto the plane Pn is degenerate. Given the tensor field
LT (x,y,z) = xTx + yTy + zTz, it maps R3 isomorphically to U ⊂ T. When restricted
on the plane Pn, LT maps Pn (isometric to R2) to a two-dimensional linear subspace
N ⊂ T. Under structurally stable conditions, N0 = N

⋂
Qn is a zero-dimensional lin-

ear subspace, i.e., the zero tensor. This happens when Pn is not a transition plane. On
the other hand, when N0 is a one-dimensional linear space, i.e., there exists a point
p0 = (x0,y0,z0) ∈ Pn (p0 is not the origin in R3) such that x0Tx + y0Ty + z0Tz ∈ Qn,
then Pn is a transition plane.

In this case, x0Tx + y0Ty + z0Tz = qn(r0) for some non-zero r0 ∈W . Recall that U is
a codimension-two subset of T, so there exist two linear functions such that

f0(qn(r0)) = 0 (13)
g0(qn(r0)) = 0 (14)

Note that qn is linear in terms of r0. Consequently, both f ′0(r0) = f0(qn(r0)) and
g′0(r0) = g0(qn(r0)) are linear in terms of r0.

Furthermore, p0 is in Pn and so is perpendicular to n, i.e., (x0,y0,z0) ·n = 0. Because
Tx, Ty, and Tz are linearly independent, the linear map LT : R3 → T given by the
field will have a left inverse T L : T→R3, such that T L(LT (p)) = p, for any p ∈R3

(e.g. T L could be LT ’s pseudoinverse). Since qn(r0) = LT (p0), T L(qn(r0)) = p0.
Therefore, we have

0 = n · p0 = n ·T L(qn(r0)) (15)

Let d0(r0) = n ·T L(qn(r0)). This function is also a linear function of r0, since both
T L and qn are linear functions with respect to their arguments. Therefore, r0 must
satisfy the following system of linear equations:

f ′0(r0) = 0 (16)
g′0(r0) = 0 (17)
d0(r0) = 0 (18)

The above system can be rewritten as

y f · r0 = 0 (19)
yg · r0 = 0 (20)
yd · r0 = 0 (21)
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where y f and yg are vector-valued linear functions of n. To understand yd , we con-
sider n · T L(qn(r0)) = n · T L( 1

2 (nrt
0 + r0 nt)− 1

3 (r0 · n)I). This is a homogeneous
quadratic function of n and a homogeneous linear function of r0. Consequently, it
can be written as yd · r0 where yd is a vector-valued quadratic function of n.

Given our assumption that r0 6= 0, the above linear system is under-determined.
Therefore, the determinant of the matrix formed by y f , yg, and yd must be zero. This
determinant is a quartic polynomial of n, which we refer to as j(n). Consequently,
when Pn is a transition plane, we have

j(n) = 0 (22)

We now return to the characterization of a transition point p0 for LT (x,y,z) = T0 +
xTX + yTy + zTz. Its unit non-repeating eigenvector n must satisfy

h(n) = 0 (23)
j(n) = 0 (24)

on RP2, the two-dimensional real-projective space. To study the maximum number
of solutions to the system, we borrow Bézout Theorem from Algebraic Geome-
try [3]:

Theorem 2. Let f0 and g0 be two homogeneous polynomials in three variables of
degree d and e, respectively. Let C f and Cg be the curves defined by f0 = 0 and
g0 = 0 in the complex projective space CP2. Assume that C f and Cg do not have any
common component, then they intersect at exactly d ∗ e points in CP2, counted with
multiplicity.

By Bézout’s Theorem, there can be at most 8 = 2× 4 solutions as h and j are
quadratic and quartic, respectively. This leads to the following result:

Theorem 3. Under structurally stable conditions, a 3D linear tensor field has at
most eight transition points.

In addition, we have the following result:

Theorem 4. Under structurally stable conditions, a 3D linear tensor field has an
even number of transition points, counting multiplicity.

A degenerate curve is divided into wedge segments and trisector segments by tran-
sition points. Under structurally stable conditions, a degenerate curve extends to
infinity on both ends. Consequently, we classify a degenerate curve as either a WW
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curve (the two end segments are both wedge segments), a WT curve (one end seg-
ment is a wedge segment and the other segment is a trisector segment), and a TT
curve (the two end segments are both trisector segments).

Along a WW or TT degenerate curve, there must be an even number of transition
points. In contrast, along a WT degenerate curve, there must be an odd number of
transition points. In particular, the following is true.

Theorem 5. Under structurally stable conditions, a WW or TT degenerate curve
can have at least zero transition points and at most eight transition points. In addi-
tion, a WT degenerate curve can have at least one transition point and at most seven
transition points.

This leads to the following result regarding the lower-bound of the number of tran-
sition points:

Theorem 6. Under structurally stable conditions, a 3D linear tensor field can have
as few transition points as the number of odd degenerate curves in the field.

Knowing that there are either two or four degenerate curves in a linear tensor field,
we have the following nine scenarios:

1. Two WW curves

2. Two WT curves

3. Two TT curves

4. Four WW curves

5. Two WW curves and two WT curves

6. One WW curve, two WT curves, and one TT curve

7. Four WT curves

8. Two WT curves and two TT curves

9. Four TT curves

Each scenario can be encoded as (p,q,r) where p, q and r are the number of WW
curves, WT curves, and TT curves, respectively. For example, the scenario of two
WW curves is encoded as 2/0/0.

Our experiments have shown that both the upper-bound and the lower-bound can
be reached for each of the nine scenarios (upper-bound: Figure 2; lower-bound:
Figure 3). Therefore, these bounds are not only tight in general, there are tight for
each of the nine scenarios. In particular, there can be zero transition points in the
field (Figure 3 (a, c, d, and i).
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(a) 2/0/0 (b) 0/2/0 (c) 0/0/2

(d) 4/0/0 (e) 2/2/0 ( f ) 1/2/1

(g) 0/4/0 (h) 0/2/2 (i) 0/0/4
Fig. 2 This figure shows that for each of the nine configurations, it is possible to have eight transi-
tion points (theoretical upper bound) in the field. From left to right, the numbers in each triple are
the number of WW curves, WT curves, and TT curves, respectively.

5 Conclusion

In this paper, we study the number of transition points in a 3D linear tensor field. We
show that under structurally stable conditions there are at most 8 transition points.
Moreover, we show that the minimum number of transition points is the same as the
number WT degenerate curves in the field. Both of these bounds are tight for the
nine scenarios in a linear tensor field.
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(a) 2/0/0 (b) 0/2/0 (c) 0/0/2

(d) 4/0/0 (e) 2/2/0 ( f ) 1/2/1

(g) 0/4/0 (h) 0/2/2 (i) 0/0/4
Fig. 3 This figure shows that for each of the nine configurations, it is possible to have as few
transition points as the theoretical lower bound (the number of WT curves) in the field.

In addition, we have established the theoretical lower-bound and upper-bound on
the number of transition points that can occur on a single degenerate curve, which
are zero (min) and eight (max) for WW and TT curves and one (min) and seven
(max) for WT curves.

In practice, we have the lower-bounds for WW, WT, and TT degenerate curves to
be tight, i.e., there are tensor fields which have degenerate curves with the given
lower-bound transition points. Furthermore, we have also identified 7 to be a tight
upper-bound for WT degenerate curves. On the other hand, the observed upper-
bound for a WW or TT degenerate curve is six, which is a conjecture that we plan
to investigate.
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In the future, we plan to strive for a tight upper bound on the number of transition
points on one WW degenerate curve and on one TT degenerate curve in a 3D linear
tensor field. In addition, we plan to study the bifurcations in a 3D tensor field.
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